문제 문제 자연수 N과 M이 주어졌을 때, 아래 조건을 만족하는 길이가 M인 수열을 모두 구하는 프로그램을 작성하시오.1부터 N까지 자연수 중에서 중복 없이 M개를 고른 수열 입력 첫째 줄에 자연수 N과 M이 주어진다. (1 ≤ M ≤ N ≤ 8) 출력 한 줄에 하나씩 문제의 조건을 만족하는 수열을 출력한다. 중복되는 수열을 여러 번 출력하면 안되며, 각 수열은 공백으로 구분해서 출력해야 한다.수열은 사전 순으로 증가하는 순서로 출력해야 한다. 문제 풀이 해당 문제는 백트래킹 알고리즘으로 해결 할 수 있는 문제이다. 입력 되는 n 값 까지의 값을 담을 수 있는 길이가 n 인 배열를 만들고 방문여부를 확인 할 수 있는 visited boolean 배열도 같이 선언한다. arr = new int[n]; vi..
문제 문제 2×n 직사각형을 1×2, 2×1과 2×2 타일로 채우는 방법의 수를 구하는 프로그램을 작성하시오.아래 그림은 2×17 직사각형을 채운 한가지 예이다. 입력 첫째 줄에 n이 주어진다. (1 ≤ n ≤ 1,000) 출력 첫째 줄에 2×n 크기의 직사각형을 채우는 방법의 수를 10,007로 나눈 나머지를 출력한다. 문제 풀이 해당 문제는 DP 알고리즘을 통해 해결 할 수 있는 문제이다. 기본 적으로 각 길이에 따른 해결 할 수 있는 경우의 수는 몇개인가를 미리 고민을 해봐야 풀 수 있다. 먼저 길이가 2 x 1 인 직사각형을 채우는 방법은 1개이다. 2 x 2 는 3개이다. 2 x 3 은 5개이다. 여기까지의 정보로 우리는 dp[i -1] + dp[i -2] * 2 식이 성립된다는 것을 알 수있다..
문제 문제 RGB거리에는 집이 N개 있다. 거리는 선분으로 나타낼 수 있고, 1번 집부터 N번 집이 순서대로 있다.집은 빨강, 초록, 파랑 중 하나의 색으로 칠해야 한다. 각각의 집을 빨강, 초록, 파랑으로 칠하는 비용이 주어졌을 때, 아래 규칙을 만족하면서 모든 집을 칠하는 비용의 최솟값을 구해보자.1번 집의 색은 2번 집의 색과 같지 않아야 한다.N번 집의 색은 N-1번 집의 색과 같지 않아야 한다.i(2 ≤ i ≤ N-1)번 집의 색은 i-1번, i+1번 집의 색과 같지 않아야 한다. 입력 첫째 줄에 집의 수 N(2 ≤ N ≤ 1,000)이 주어진다. 둘째 줄부터 N개의 줄에는 각 집을 빨강, 초록, 파랑으로 칠하는 비용이 1번 집부터 한 줄에 하나씩 주어진다. 집을 칠하는 비용은 1,000보다 작..
문제 문제 위 그림은 크기가 5인 정수 삼각형의 한 모습이다.맨 위층 7부터 시작해서 아래에 있는 수 중 하나를 선택하여 아래층으로 내려올 때, 이제까지 선택된 수의 합이 최대가 되는 경로를 구하는 프로그램을 작성하라. 아래층에 있는 수는 현재 층에서 선택된 수의 대각선 왼쪽 또는 대각선 오른쪽에 있는 것 중에서만 선택할 수 있다.삼각형의 크기는 1 이상 500 이하이다. 삼각형을 이루고 있는 각 수는 모두 정수이며, 범위는 0 이상 9999 이하이다. 입력 첫째 줄에 삼각형의 크기 n(1 ≤ n ≤ 500)이 주어지고, 둘째 줄부터 n+1번째 줄까지 정수 삼각형이 주어진다. 출력 첫째 줄에 합이 최대가 되는 경로에 있는 수의 합을 출력한다. 문제 풀이 해당 문제는 DP 알고리즘으로 풀 수 있는 문제로 ..
문제 문제 아래 과 같이 여러개의 정사각형칸들로 이루어진 정사각형 모양의 종이가 주어져 있고, 각 정사각형들은 하얀색으로 칠해져 있거나 파란색으로 칠해져 있다. 주어진 종이를 일정한 규칙에 따라 잘라서 다양한 크기를 가진 정사각형 모양의 하얀색 또는 파란색 색종이를 만들려고 한다. 전체 종이의 크기가 N×N(N=2k, k는 1 이상 7 이하의 자연수) 이라면 종이를 자르는 규칙은 다음과 같다.전체 종이가 모두 같은 색으로 칠해져 있지 않으면 가로와 세로로 중간 부분을 잘라서 의 I, II, III, IV와 같이 똑같은 크기의 네 개의 N/2 × N/2색종이로 나눈다. 나누어진 종이 I, II, III, IV 각각에 대해서도 앞에서와 마찬가지로 모두 같은 색으로 칠해져 있지 않으면 같은 방법으로 똑같은 크..
문제 문제 조기 졸업을 꿈꾸는 종욱이는 요즘 핫한 딥러닝을 공부하던 중, 이미지 처리에 흔히 쓰이는 합성곱 신경망(Convolutional Neural Network, CNN)의 풀링 연산에 영감을 받아 자신만의 풀링을 만들고 이를 222-풀링이라 부르기로 했다.다음은 8×8 행렬이 주어졌다고 가정했을 때 222-풀링을 1회 적용하는 과정을 설명한 것이다 행렬을 2×2 정사각형으로 나눈다. 각 정사각형에서 2번째로 큰 수만 남긴다. 여기서 2번째로 큰 수란, 정사각형의 네 원소를 크기순으로 a4 ≤ a3 ≤ a2 ≤ a1 라 했을 때, 원소 a2를 뜻한다. 2번 과정에 의해 행렬의 크기가 줄어들게 된다.종욱이는 N×N 행렬에 222-풀링을 반복해서 적용하여 크기를 1×1로 만들었을 때 어떤 값이 남아있을..